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A hybrid lattice Boltzmann method �LBM� for binary mixtures based on the free-energy approach is pro-
posed. Nonideal terms of the pressure tensor are included as a body force in the LBM kinetic equations, used
to simulate the continuity and Navier-Stokes equations. The convection-diffusion equation is studied by finite-
difference methods. Differential operators are discretized in order to reduce the magnitude of spurious veloci-
ties. The algorithm has been shown to be stable and reproducing the correct equilibrium behavior in simple test
configurations and to be Galilean invariant. Spurious velocities can be reduced by approximately an order of
magnitude with respect to standard discretization procedure.
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I. INTRODUCTION

In recent years lattice Boltzmann methods �LBM� �1�
have been widely used to study multiphase fluids �2�. Ex-
amples of applications are the analysis of growth regimes in
phase separation of binary mixtures �3� or the study of back-
flow effects in liquid crystal behavior �4�. The LBM ap-
proach is well suited for dealing with complex geometries or
for parallel implementations �1�. Moreover, in the free-
energy approach �5�, the mesoscale properties of the fluid
�interface structures, coupling with local order parameters,
etc.� can be straightforwardly inserted in the LBM numerical
scheme and taken under control. Due to the relevance of the
method, it is worth to further develop LBM algorithms in
order to improve numerical stability and accuracy, also by
optimizing the use of computer resources.

LBM dynamics is defined in terms of kinetic equations
for a set of populations f i representing, at each lattice site
and time, the density of particles moving in one of the al-
lowed directions of a given lattice. The sum over the direc-
tions i of f i is the local density of the fluid while the first
momentum is related to the local fluid momentum. In one
approach a forcing term is included in the kinetic equations
representing the interactions between the components of the
mixture �6�. Differently, the free-energy method was origi-
nally developed by fixing the second moment of the popula-
tions in terms of the pressure tensor of the fluid mixture �7�.
It has been applied to complex fluids in Refs. �8–10�.

In this paper we consider an approach similar to the one
of Ref. �11� where a free-energy dependent term is added as
a body force in the kinetic equations. This approach traces
back to the work of Guo et al. �12� where a comparison with
different methods to introduce the force is reported. With
respect to the algorithm of Ref. �7�, this allows a better con-
trol of the continuum limit still keeping all the advantages of

the free-energy method. In Ref. �11� a lattice Boltzmann
equation is considered for each component. Here we con-
sider a “hybrid” algorithm where LBM is used to simulate
Navier-Stokes equations while finite-difference methods are
implemented to simulate the convection-diffusion equation.
Such hybrid codes have been used for complex fluids �13�,
liquid crystals �14�, and thermal flows �15�. This allows to
reduce in a relevant way the amount of required memory in
systems with multicomponent order parameters or in simula-
tions of three-dimensional systems.

A typical undesired effect due to discretization is the ap-
pearing of unphysical flow close to the interfaces. This flow,
often known as spurious velocities, can severely affect the
quality of LBM simulations. In this work we discretize the
differential operators by a procedure optimized for reducing
the magnitude of spurious velocities, following the so-called
“stencil” method applied in Ref. �16� to a multiphase one-
component fluid. Here we will see that this method allows to
reduce spurious velocities of about an order of magnitude.

The paper is organized as follows. In the next section the
LBM algorithm proposed is described and details on the nu-
merical implementation is given. In Sec. III results of simu-
lations of test configurations are shown. We will see how
spurious velocities around curved interfaces can be reduced
applying a more general stencil to discretize derivatives. We
will also discuss the convection of a drop under a constant
force acting for a finite time interval. Then some conclusions
will follow in Sec. IV.

II. MODEL

The equilibrium properties of the fluid mixture can be
described by a free energy

F =� dr�nT ln n +
a

2
�2 +

b

4
�4 +

�

2
����2� , �1�

where T is the temperature, n is the total density of the mix-
ture, and � is the scalar order parameter representing the
concentration difference between the two components of the
mixture. The term depending on n gives rise to the ideal gas

*adriano.tiribocchi@ba.infn.it
†nicolastella1@gmail.com
‡gonnella@ba.infn.it
§a.lamura@ba.iac.cnr.it

PHYSICAL REVIEW E 80, 026701 �2009�

1539-3755/2009/80�2�/026701�7� ©2009 The American Physical Society026701-1

http://dx.doi.org/10.1103/PhysRevE.80.026701


pressure pi=nT which does not affect the phase behavior.
The terms in � in the free-energy density f�n ,� ,T� corre-
spond to the typical expression of Ginzburg-Landau free en-
ergy used in studies of phase separation �17�. The terms in
the free energy can be distinguished in two parts: the poly-
nomial terms describe the bulk properties of the mixture and
the gradient term is related to the interfacial ones.

In the bulk terms the parameter b is always positive to
ensure stability while the parameter a can distinguish a dis-
ordered �a�0� and an ordered �a�0� mixture, in which the
two components coexist with equilibrium values ��eq where
�eq=�−a

b �18�. The equilibrium profile between the two co-
existing bulk components is

��x� = �eq tanh	2x

�

 �2�

with interface width

� = 2� 2�

− a
�3�

and surface tension

� =
2

3
�2a2�

b
. �4�

The thermodynamic functions can be obtained from the free
energy �1� by differentiation. The chemical-potential differ-
ence between the two components is given by

	 =

F

�

= a� + b�3 − ��2� . �5�

The pressure P�� is a tensor since interfaces in the fluid can
exert nonisotropic forces �19�. The diagonal part p0 can be
obtained from Eq. �1� as

p0 = n

F

n

+ �

F

�

− f�n,�,T�

= pi +
a

2
�2 +

3b

4
�4 − ����2�� −

�

2
����2. �6�

For a fluid with concentration gradients P�� has to verify the
general equilibrium condition ��P��=0 �20�. A suitable
choice for the pressure tensor is

P�� = p0
�� + ������� . �7�

The hydrodynamic equations of fluids follow from the
conservation laws for mass and momentum. For binary mix-
tures at constant temperature the evolution of density, veloc-
ity, and concentration fields is described by the continuity,
the Navier-Stokes and the convection-diffusion equations
�21�, respectively,

�tn + ���nu�� = 0, �8�

�t�nu�� + ���nu�u�� = − ��P��

+ ���
	��u� + ��u� −
2
��

d
��u�
 + �
����u��

= − ���pi� − ���	 + ���
	��u� + ��u� −
2
��

d
��u�


+ �
����u�� , �9�

�t� + ����u�� = ��2	 , �10�

where 
 and � are the shear and the bulk viscosities, � is the
mobility coefficient, and d is the dimensionality of the sys-
tem.

Equations �8�–�10� can be solved numerically. We use a
mixed approach that consists of a finite-difference scheme
for solving Eq. �10� and of a LBM approach with forcing
term for Eqs. �8� and �9�. This has the advantage that the
amount of required memory can be decreased so that larger
systems can be simulated. In our case of study, for a two-
dimensional model on a square lattice with nine velocities
�D2Q9�, this method allows to reduce the required memory
of 
27%. Actually, the convection-diffusion equation could
have also been solved on a D2Q5 lattice �22� and in this case
the reduction in memory would have been of 
17%. More-
over, the spurious terms in the continuum equations found in
previous formulations based on a free energy �7� can be
avoided.

A. Lattice Boltzmann scheme with forcing term

To solve Eqs. �8� and �9� we use a Lattice Boltzmann
scheme on a lattice of size Lx�Ly in which each site is
connected to nearest and next-to-nearest neighbors. This is
one of the simplest geometries which reproduce correctly the
Navier-Stokes equations in continuum limit and is shown in
Fig. 1. Horizontal and vertical links have length �x and di-
agonal links �2�x. On each site r nine lattice velocity vec-
tors ei are defined. They have modulus �ei�=

�x
�tLB

�c, being
�tLB the time step, for i=1, 2, 3, 4, and modulus �ei�=�2c for

1

2

3

4

56

7 8

0

FIG. 1. Cell of the D2Q9 lattice used in the present study.
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i=5, 6, 7, 8. Moreover, the zero velocity vector e0=0 is
defined. A set of distribution function �f i�r , t�� is defined on
each lattice site r at each time t.

In the LB scheme for simple fluids �1� the distribution
functions evolve during the time step �tLB according to a
single relaxation-time Boltzmann equation �23�

f i�r + ei�tLB,t + �tLB� − f i�r,t� = −
�tLB

�
�f i�r,t� − f i

eq�r,t�� ,

�11�

where � is a relaxation parameter and f i
eq�r , t� are the local

equilibrium distribution functions. The total density n and
the fluid momentum nu are defined by the following rela-
tions

n = �
i

f i, nu = �
i

f iei, �12�

where u is the fluid velocity. The form of f i
eq must be chosen

so that the mass and momentum are locally conserved in
each collision step, therefore the following relations must be
satisfied:

�
i

�f i
eq − f i� = 0 ⇒ �

i

f i
eq = n , �13�

�
i

�f i
eq − f i�ei = 0 ⇒ �

i

f i
eqei = nu . �14�

Moreover, the f i
eq’s need to have some symmetries so that the

Navier-Stokes equations are reproduced in the continuum
limit. A convenient choice for the local equilibrium distribu-
tion functions of an ideal fluid in the case of a D2Q9 model
is given by a second-order expansion in the fluid velocity u
of the Mawwell-Boltzmann distribution �24�

f i
eq�r,t� = �in�1 +

ei · u

cs
2 +

uu:�eiei − cs
2I�

2cs
4 � , �15�

where cs=c /�3 is the sound speed in this model, I is the
unitary matrix and a suitable choice for the coefficients �i is
�0=4 /9, �i=1 /9 for i=1–4, �i=1 /36 for i=5–8. This form
is such that

�
i

f i
eqei�ei� = ncs

2
�� + nu�u�. �16�

In order to simulate Eq. �9� where a nonideal pressure
tensor P�� appears, we adopt a LB model with a forcing term
following a derivation similar to that of Ref. �12�. In the case
of Ref. �12� the model was used to study forced simple fluids
while we address the case of a binary mixture with interac-
tion and interface contributions. The evolution equation of
the distribution functions becomes

f i�r + ei�tLB,t + �tLB� − f i�r,t�

= −
�tLB

�
�f i�r,t� − f i

eq�r,t�� + �tLBFi, �17�

where Fi is the forcing term to be properly determined. The
equilibrium distribution functions �15� are not changed ex-

cept for the formal substitution u→u�, where u� is given by

nu� = �
i

f iei +
1

2
F�tLB, �18�

F being the force density acting on the fluid and u� the
physical velocity. The expression of F for our case will be
given later. The forcing term Fi can be expressed as a power
series at the second order in the lattice velocity �25�

Fi = �i�A +
B · ei

cs
2 +

C:�eiei − cs
2I�

2cs
4 � , �19�

where A, B, and C are functions of F. The moments of the
force verify the following relations

�
i

Fi = A, �
i

Fiei = B, �
i

Fieiei = cs
2AI +

1

2
�C + CT� ,

�20�

and have to be consistent with the hydrodynamic equations.
The continuum limit is obtained by using a Chapman-

Enskog expansion in the Knudsen number �,

f i = f i
�0� + �f i

�1� + �2f i
�2� + ¯ , �21�

�t = ��t1
+ �2�t2

, �22�

�r = ��r1
, �23�

F = �F1, A = �A1, B = �B1, C = �C1. �24�

We note that the force term is of first order in � �26�. The
continuity and the Navier-Stokes equations are recovered in
the following form:

�t�nu�
�� + ���nu�

�u�
�� = − ���ncs

2� + F� + ���
���u�
� + ��u�

���
�25�

in terms of the velocity u� when the following expressions
for the terms A, B, C:

A = 0, B = 	1 −
�tLB

2�

F, C = 	1 −

�tLB

2�

�u�F + Fu��

�26�

are used. The continuum Eqs. �8� and �25� can be also ob-
tained by a Taylor expansion method. We remark that no
spurious terms are present in the continuum equations except
for a term of order u�3 which is neglected in Eq. �25�. Such
approximation is correct as far as u�2�cs

2 when the expan-
sion �15� is valid �1�. In the present formulation the second
moment of the equilibrium distribution function �16� does
not need to be modified to include the effects of the pressure
tensor as in previous models based on a free energy �7�. It is
straightforward to show that the momentum defined in Eq.
�18� corresponds to an average between the pre- and postcol-
lisional values of the velocity u which is the correct way to
calculate it when a forcing term is introduced �6,26�. It is this
value that appears in the continuum equations and is mea-
sured in simulations. As in the case of standard LBM �1�, the
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present model is characterized by the fact that �= 2
d
 with

shear viscosity


 = ncs
2�tLB	 �

�tLB
−

1

2

 . �27�

In order to recover Eq. �9� we have to require that

F = ��ncs
2 − pi� − � � 	 = − � � 	 . �28�

The last equality comes from the fact the term ncs
2 corre-

sponds in LBM to the ideal gas pressure pi �1�. Finally, the
forcing term in Eq. �17� has the form

Fi = 	1 −
�tLB

2�

�i� ei − u�

cs
2 +

ei · u�

cs
4 ei� · F �29�

with u� given by Eq. �18�.

B. Numerical calculation of the forcing term

The derivatives of the order parameter in the forcing term
�28� are calculated using a finite-difference scheme. In par-
ticular, we have adopted a stencil representation of finite-
difference operators in the more general way to ensure
higher isotropy �16�, which is known to reduce spurious ve-
locities �27,28�. The schemes for the x derivative and the
Laplacian operators are, respectively,

�Dx =
1

�x�− M 0 M

− N 0 N

− M 0 M
� , �30�

�D
2 =

1

�x2�R Q R

Q − 4�Q + R� Q

R Q R
� , �31�

with 2N+4M =1 and Q+2R=1 to guarantee consistency be-
tween the continuous and discrete derivatives �16�. The sub-
script D in the symbols of derivatives denotes the discrete
operator. In these schemes the central entry is referred to the
lattice point where the derivative is computed, and the other
entries are referred to the eight neighbor lattice sites. The
discrete derivatives of the order parameter � are computed
by summing the values in the site and in the eight neighbors
with the weights in the matrices �30� and �31�. The y deriva-
tive is computed by transposing the matrix �30�. The choice
of the free parameters N and Q is made in such a way that
the spurious velocities are minimized �see next section�. We
will refer to this case as the optimal choice �OC�. The values
N=1 /2, M =0, Q=1, and R=0 correspond to the standard
central difference scheme denoted as SC. We will compare
SC and OC in the following.

C. Scheme for the convection-diffusion equation

The convection-diffusion Eq. �10� is solved by using a
finite-difference scheme. The function ��r , t� is defined on
the nodes of the same lattice used for the LB scheme. The
time is discretized in time steps �tFD with time values tn

=n�tFD, n=1,2 ,3 , . . .. The relationship connecting the two

time steps is �tLB=m�tFD, being m an integer. We denote
any discretized function at time tn on a node �xi ,yj� �i
=1,2 , . . . ,Lx ; j=1,2 , . . . ,Ly� of the lattice by g�xi ,yj , t

n�
=gij

n . At each time step we update �n→�n+1 using Eq. �10� in
two successive partial steps �29�. This allows to have a better
numerical stability. In the first step we implement the con-
vective term using an explicit Euler algorithm �30�

�n+1/2 = �n − �tFD��n��u�
�n + u�

�n���n� �32�

where the velocity u� comes from the solution of the LB
equation. Note that the term ��u�

�n has not been neglected
since the fluid is not exactly incompressible. Indeed, the
Navier-Stokes Eq. �25� coming from the LBM contains some
compressibility terms which can be anyway kept very small
requiring that u�2�cs

2 �1�. The derivatives in Eq. �32� are
discretized as follows:

�Dxux
��ij

n =
ux,�i+1�j

�n − ux,�i−1�j
�n

2�x
, �33�

�Dx��ij
n =

�ij
n − ��i−1�j

n

�x
if ux,ij

�n � 0, �34�

�Dx��ij
n =

��i+1�j
n − �ij

n

�x
if ux,ij

�n � 0, �35�

and analogously for the y components.
The diffusive part of Eq. �10� is implemented in the sec-

ond update step using an explicit Euler algorithm as

�n+1 = �n+1/2 + �tFD��a�2�n+1/2 + b�2fn − ��2��2�n+1/2�� ,

�36�

where fn= ��n�3 and the operator �2 is discretized using the
form given in Eq. �31� with the standard choice Q=1 and
R=0. Other choices using a more general stencil for dis-
cretizing �2 are possible though we checked that they did not
provide any relevant difference.

III. RESULTS AND DISCUSSION

We considered several test cases in order to validate our
model. We used the values �x=�tLB=�tFD=1. In the free
energy we adopted the parameters −a=b=10−3, �=−3a cor-
responding to an equilibrium interface of width ��5�x. The
mobility � was set to 5 and the relaxation time � /�tLB was 1
unless differently stated.

We first examined the relaxation to equilibrium of a pla-
nar sharp interface on a lattice of size Lx=Ly =64 varying �
in the SC case. In all the cases the system correctly relaxes to
the expected profile �2�. One example is reported in Fig. 2. In
the case of a planar interface the fluid velocities u� decay to
negligible values as it should be at equilibrium when �	
=0 and ��P��=0.

We then studied a circular drop as a test for a case with
interfaces not aligned with the lattice links. A drop with
sharp interface of diameter 64�x was placed at the center of
a lattice of size Lx=Ly =128 and let equilibrate in the SC
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case. Interfaces relax to the expected profile without deform-
ing the drop but spurious velocities appear as it can be seen
in the upper panel of Fig. 3 in the case with � /�tLB=5. We
then used the OC scheme to verify whether spurious veloci-
ties could be reduced by using a more isotropic structure for
the discrete spatial derivatives in the forcing term �28�. We
scanned several values of N and Q in order to reduce the
maximum value of the velocity �umax

� � on the whole lattice.
The optimal values are summarized in the Table I. It is in-
teresting to note that there is a couple of values N=0.3 and
Q=2.5 which occurs more frequently. We verified that this
choice is also effective in reducing spurious velocities even
for the other values of �. For this choice of N and Q the
maximum velocities differ only by a small percentage from
the tabled values.

Velocities can be greatly reduced with respect to the SC
case as it can be visually observed in the lower panel of Fig.
3.

We also tried to get an analytical estimate of the optimal
values of N and Q in the following way. At equilibrium it
holds that ��P��=���	= �a�+3b�3����−k�����2��=0.
This expression depends on the first- and third-order deriva-

tives. By using the stencils �30� and �31� we get for the
discretized operators the expressions

�Dx = �x +
1

6
��x�2�x

3 +
1 − 2N

2
��x�2�x�y

2 + ¯ �37�

and

�D
2 = �2 +

1

12
��x�2��x

4 + �y
4� +

1 − Q

2
��x�2�x

2�y
3 + ¯ ,

�38�

so that

�Dx��D
2 � = �x��2� +

1

4
��x�2�x

5 + �1

6
+

1 − 2N

2
+

1 − Q

2
�

���x�2�x
3�y

2 + � 1

12
+

1 − 2N

2
���x�2�x�y

4 + ¯ .

�39�

By imposing that the error terms in the third-order derivative
depending on N and Q vanish, we get N=7 /12�0.6 and
Q=7 /6�1.2. However, this estimate does not correspond to
the optimal results of Table I. This is due to the fact that
these optimal values were found by considering the full dy-
namical problem with the whole set of equations where we
minimized the spurious velocities. In the estimate after Eq.
�40� the coupling with the velocity field was not taken into
account so that there is no a priori reason to expect the same
optimal values for N and Q.

A comparison of the spurious velocities in the SC and OC
cases is shown in Fig. 4. By using the optimal choice OC the
spurious velocities can be reduced by a factor approximately
10 with respect to the standard case SC over the whole range
of � values. The stencil forms �30� and �31� were also ap-
plied to the model of Ref. �7� for nonideal fluids finding a
comparable reduction in the magnitude of spurious velocities
with respect to the standard case �16�.

We then studied the motion of an equilibrated drop of
diameter 64�x in a lattice of size Lx=256, Ly =128 under the
effect of an external constant force that acts up to the time
t /�tLB=500 and is then switched off. The additional force
G=n�gx ,0��x2 /�tLB acts on the total density. gx is in the
range �10−5 ,5�10−5� and the OC scheme is used. The over-
all system is set in motion rightward with increasing velocity

-1

-0.5

0

0.5

1

10 15 20 25 30 35 40 45 50

ϕ/
ϕ e

q

x/∆x

FIG. 2. Equilibrium profile of a planar interface on a lattice of
size Lx=Ly =64 in the SC case. The continuous line is the analytical
result �2� and data points are the results of simulations.

(b)(a)

FIG. 3. Velocity patterns �the same scale is used in both the
panels� at equilibrium when � /�tLB=5 in the SC case �upper panel�
and in the OC case �lower panel�. Empty spaces are due to negli-
gible values of velocity. In both the cases the system has size Lx

=Ly =128.

TABLE I. Optimal values of N and Q for different values of �
and the corresponding values of the maximum spurious velocity
�umax

� �.

� /�tLB N Q �umax
� � /cs

0.6 0.3 3 0.0001753

0.8 0.3 2.5 0.0000603

1 0.3 2.5 0.0000365

1.2 0.3 2.5 0.0000267

5 0.3 2.5 0.0000088

10 0.3 2 0.0000062
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until the force G is on, then it moves with constant speed.
The choice of gx is such that the final velocity is much
smaller than the speed of sound cs. The aim was to check
whether the system is Galilean invariant and the drop is cor-
rectly convected by the flow. We monitored the shape of the
drop and measured its center-of-mass velocity vCM. This is
defined as the average velocity of the center of mass whose
position is

rCM�t� =
�ij�ijrij�t�

�ij�ij
, �40�

where the sum is over the lattice nodes rij inside the drop.
This velocity represents the convection velocity and is com-
pared with the fluid velocity v f�t�=u��rCM�t�� at the center of
mass given directly by the LBM. In Fig. 5 the comparison
between the velocities vCM and v f along the x direction is
shown in the case with gx=3�10−5. It is evident that the two
coincide indicating that the drop is correctly advected by the
fluid. Moreover, its shape is not altered by motion as it can
be seen in Fig. 6 where some configurations of the system at

different times are presented. Moreover, the drop is shown to
make clear that it does not change in shape with time. We
measured the ratio of the horizontal and vertical diameters
finding that it stays almost constant with a deviation less than
3% from the value 1. If the advection velocity is higher, the
drop will be slightly deformed being stretched along the x
direction. This effect becomes negligible when increasing the
surface tension �4� via the parameter �.

IV. CONCLUSIONS

In this paper we have considered a lattice Boltzmann
method for binary mixtures with thermodynamics fixed by a
free-energy functional. We used a mixed method, with con-
tinuity and Navier-Stokes equations simulated by LBM, and
convection-diffusion equation by finite-difference schemes.
Differently than in previous free-energy LBM formulations
�7�, the interaction part in the pressure tensor is not intro-

FIG. 4. Maximum spurious velocities as a function of � in the
SC case �+� and in the OC case �� �.

0

0.005

0.01

0.015

0.02

0 2000 4000 6000 8000

t / ∆tLB

v C
M

x
/c

s
,v

fx
/c

s

FIG. 5. Velocities of the center of mass of the drop vCMx �� �
and of the fluid v fx �—� at the center of mass along the x direction
as a function of time. The external force acts until the time
t /�tLB=500.

t/∆tLB = 500

t/∆tLB = 3000

t/∆tLB = 6000

(b)

(a)

FIG. 6. Configurations of the advected drop at consecutive
times. The system has size Lx=256, Ly =128. In the lower panel the
drop, extracted from the system, is shown on an underlying mesh to
better appreciate its shape.
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duced by fixing the second moment of the LBM populations
but by introducing a forcing term in the lattice equation. This
approach is suggested by a microscopic picture and allows to
obtain a continuum limit without spurious terms. On the
other hand, the mixed or hybrid approach allows a reduction
in the required memory and this can be relevant in perform-
ing large-scale simulations.

In order to reduce spurious velocities, differential opera-
tors have been discretized by generalizing the usual lattice
representations. Free parameters appear and their optimal
values have been fixed by requiring that the maximum value
of spurious velocities at equilibrium is minimized.

We considered simple test situations, flat interfaces and
single drops showing that the correct equilibrium profiles are
reproduced. We found that spurious velocities are reduced of
about an order of magnitude when a more general stencil is

applied to the derivatives in the forcing term of the LBM
equations. We did not found any relevant difference by ap-
plying this procedure to the differential operators appearing
in the convection-diffusion equation. We also checked that
our method is stable in phase-separation studies, even if we
have not reported the results of these simulations in this
work. Finally, we checked the effective Galilean invariance
of the system by advecting for some time interval by a con-
stant force a configuration with one drop and then letting the
system to evolve without forcing. For the cases considered,
we did not observe relevant drop deformations, the drop be-
ing correctly advected by the surrounding fluid. In conclu-
sion, we hope that this development of the free-energy LBM
can be useful in future simulations of binary mixtures and
complex fluids.
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